
N A S A C O N T R A C T O R

R E P O R T '

ON-LINE PARSING OF HAND-PRINTED
MATHEMATICAL EXPRESSIONS:
FINAL REPORT FOR PHASE I1

by Thonzns G. WilZinms

Prepared by
SYSTEM DEVELOPMENT CORPORATION
Santa Monica, Calif.
for Electrolrics Research Center

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D . C. D E C E M B E R 1 9 6 9

TECH LIBRARY KAFB,.NM
-

" "-2
00bOb31

NASA UK-1455

ON-LINE PARSING OF HAND-PFUNTED

MATHEMATICAL EXPRESSIONS:

FINAL REPORT FOR PHASE II

By Thomas G. Williams

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report No. TM-4158/000/00

Prepared under Contract Nos. NAS 12-526 and DAHC15-67-C-0149 by
SYSTEM DEVELOPMENT CORPORATION

Santa Monica, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
. .

For sale by the Clearinghouse for Federal Scientific and Technical lnforrnotion
Springfield, Virginia 22151 - Price $3.00

TABLE OF CONTENTS

Section

1.

-
2.

3.

3 . 1

3.2

3.3

4.

5 .

5 .1

5.2
5.2.1
5.2.2
5.2.3
5.2.4

6,

Figures

1.
2.
3.
4.
5.
6.
7.
0.
9.
10.

StringList 4
Fract List . e l e . l . l e 5

Sortlist List . . . l l l . l 6

PARSER DESCRIPTION . , . . , . e . l . l . . . 6

Overwrite Operations , . e , , . l . 10

Move Operations . l , l . . . , . . 11
Horizontal Open-up . . . e . . , l l . . , , I 11
Horizontal Close-up . . , e 13
Move Expression ; . e . l e i3
MoveGroup, l 14

On-Line Parsing System in Operation a 2
STRING List Structure for a Subexprtssion (X) 5
Derivation of Positional Relationship Information . . 7
Sample Input Structures and Character Subsets l . . . g
Scrub Operations . b . e . . l . . l l l l . . 10
Overwrite Operation , . l l . e 11
Horizontal Open-up Operations 12
Horizontal Close-up Operations 13
Move Expression Operation 14
Move Group Operations . l . . l l 14

iii

1. INTRODUCTION

This document describes a program which analyzes free-hand twoddimensional
mathematical expressions. Such expressions can be generated with the hand-
pr inted character recogni t ion program* cur ren t ly in opera t ion a t SDC. The
use r i n t e rac t s with the charac te r recognizer to en te r charac te rs o f any s i z e
placed anywhere on the input surface. H i s hand-printed Characters, as recog-
nized, are rep laced in a -s tandard form at the same place, same size, same
aspec t r a t io by the character recognizer. The output of the ana lyzer is a l s o
displayed a t the top of the wri t ing surface so that the user knows the cur ren t
i n t e rp re t a t ion of his input . Figure 1 shows the system in operat ion.

The analysis or pars ing program is a two-phase system. The f irst phase
converts t he two-dimensional s t r u c t u r e i n t o a l i nea r s t r i ng . Th i s phase
operates concurrently with input and ed i t ing , so t h a t t h e user can always
be given the cur ren t in te rpre ta t ion of h i s input . The s t r ing a l so p rov ides
edit ing information. The second phase operates on t h e l i n e a r s t r i n g i n t h e
same manner as a conventional compiler or interpreter. It is dependent upon
the ult imate objective of the input, and thus w i l l not be discussed here.

There are three advantages to th i s two-phase system. F i r s t , t h e f irst phase
can operate correct ly on incomplete expressions. The user ‘feedback mentioned
above can only be given if incomplete expressions can be analyzed. Second, as
mentioned above, t h e information developed can be used i n e d i t i n g , whether o r
not the expression i s complete. This allows, for example, a group of characters--
such as an in tegra l s ign wi th i t s associated limits of integrat ion-- to par t ic ipate
in edi t ing operat ions without expl lc i t designat ion by the user . Third, t h e
context-dependencies of mathematical notation can be handled by the second phase,
where syntax- or table-driven systems make t h i s e a s y ,

2. PROGRAM STRATEGY

The f irst phase of t h e parser analyzes “local syntax,” that i s , re la t ionships
between nearby characters. The assumption i s made t h a t these re la t ionships
can be analyzed by comparing successive pairs of characters , Thus, f o r example,
rules are formulated as t o what cons t i tu tes a subscr ipt or superscr ipt , and
pos i t ions o f charac te rs a re t es ted aga ins t these ru les . The use of such l o c a l
syntax allows incomplete expressions t o be processed.

The current program reprocesses a l l input charac te rs in t h e expression af ter
each new s e t of characters is received from the character recognizer . The
characters are kept in a l ist t h a t i s sor ted in l e f t - to - r igh t o rder . This
l i s t i s used t o g e n e r a t e t h e l i n e a r s t r i n g . I n earlier versions, at tempts were
made t o edi t t he new charac te rs in to the ex i s t ing l inear s t r ing without
rescanning a l l characters . Thus, t h e rout ines used were (and f o r t h e most
p a r t s t i l l are) r e l a t ive ly i n sens i t i ve t o va r i a t ions i n cha rac t e r o rde r , Th i s
provides protect ion in cases where edi t ing operat ions a l ter the pos i t ion of

*The character recognizer i s descr ibed in T”3937/000/00.

Figure 1. On-Liw P u s i n g System in Operation

2

characters. The current approach solves many of the problems tha t a rose i n
making the analysis completely insensi t ive to character order .

Under time-sharing, the user does not not ice the extra time requi red to p rocess
the entire s t r i n g of characters. In t h e present system, representative compu-
t a t i o n times for the necessary operat ions are:

10-15 msec per s t roke to recognize a character

2 msec per charac te r for the parser
2 msec pe r cha rac t e r ' t o gene ra t e t h e output messages

Thussadding a new c h a r a c t e r t o a s t r i n g which current ly has 40 characters would
r equ i r e l e s s t han 200 msec. This i s in s ign i f i can t compared t o the wait i n the
time-sharing queue, which is on the order of seconds.

The rest of t h i s document descr ibes in detai l t h e operation of t h e program.
It i s d iv ided in to sec t ions on the data s t ruc tu res , t he program s t ruc tu re , and
the ed i t ing opera t ions .

I

!

3. DATA DESCRIPTIONS

The bas ic data element i n t h e program i s ca l l ed the CSP block.* A CSP block
i s generated for each user-supplied character and contains both posit ion and
syntax information. "he following information i s i n t h e CSP (a l l information
i s generated by t h e parser unless otherwise noted):

Character The character code; eupplied by the character
recognizer.
The coordinates of t h e lower l e f t corner of
t he minimum rectangle surrounding t h e character ;
provided by the character recognizer.

x. * yo

DX ,DY The length of the sides of t h e minimum rectangle;
provided by the character recognizer .

The posi t ion of the center of the character ,
This is a weighted center: In X, it is the
geometric center; in Y , it may differ from
the geometric center as spec i f i ed i n a property
s t r ing maintained for each character . This is
t o allow proper analysis of characters l i k e "y"
and "g" which extend below the cha rac t e r l i ne .

xc BYC

Display Buffer A p o i n t e r t o t h e l o c a t i o n of the charac te r i n

character output routine.
Loca t ion the d i sp lay buf fer ; th i s is generated by t h e

*The name comes from an earlier program; t h e meaning o f t h e l e t t e r s has been
l o s t i n a n t i q u i t y .

3

SORTLIST Link

Function

Related Character

Related Fraction
Bar

Mainline Character
Forward

STRING Pointer

Expression Begin

Expression End

A po in te r t o t he nex t CSP on t h e SORTLIST, which
is t h e l i s t of CSP's sor ted in to l e f t - to- r igh t
order; generated by the so r t rou t ine .

The func t ion ass igned to the charac te r ; func t ions
are mainline (on the same l i n e as another char-
ac t e r) , subsc r ip t , supe r sc r ip t , and unrelated.

The c h a r a c t e r t o which t h i s c h a r a c t e r i s r e l a t e d
by the func t ion ; the le f tmost charac te r in a s t r i n g
or subs t r ing has no related character , nor does
an unrelated character.

If t h e character is i n t h e numerator o r denomi-
nator of a f r ac t ion , t he CSP loca t ion of t h a t
bar is s tored here .

If another character fol lows this one on t h e
same l i n e , i t s CSP loca t ion i s s tored here.

The p o i n t e r t o t h e b lock i n t he STRING l i s t which
con ta ins t h i s CSP.

The p o i n t e r t o t h e b l o c k i n t h e STRING l ist
which contains the beginning of the expression
f o r t h i s c h a r a c t e r . The expression for an
ordinary character contains i t s subscripts and
supe r sc r ip t s ; fo r a f r ac t ion bar, i t s numerator
and denominator,

The p o i n t e r t o t h e b l o c k i n t h e STRING l i s t which
contains the end of the expression for this
character.

CSP's are contained on th ree l is ts , descr ibed in the fo l lowing sec t ions .

3.1 STRING LIST

The STRING l i s t i s the l inear ou tput produced by the parser . It is a two-way
l i s t s t ruc tu re , which permits scanning the l i s t in bo th d i r ec t ions , Two types
of c e l l s are contained on t h i s l ist : (1) e x t e r n a l c e l l s , which contain CSP
addresses and are used for characters input by the user , and (2) i n t e r n a l c e l l s ,
which do not contain CSP addresses and are used for ,characters which must be
in se r t ed i n to t he l ist in t e rna l ly t o r ep resen t t he meaning of the two-dimensional
structure. Figure 2 shows the structure for the sub-expression (X) where the
X has been supplied by the user and t h e () a r e added by the parser ,

4

STRING L i s t f o r (X)

T

2 Words

Figure 2. STRING L i s t S t ruc ture for a Subexpression (X)

The notation used in t h e STRING is similar to--but not i den t i ca l t.0--the notat ion
used i n algebraic compilers such as FORTRAN, It i s best given by example.

Two-dimensional
sub- and super-scr ipt notat ion: STRING equivalent:

a2 i + bf3

Two-dimensional
f rac t ions :
a2 + b2

C2

3.2 FRACT LIST

STRING equivalent:

The FRACT l i s t is a l ist of the CSP's f o r a l l hor izonta l bars, It contains
CSP's for bo th f rac t ion bars and minus signs, because a bar is not known t o be
a minus s i g n u n t i l a l l characters have been processed. The order on t h i s l i s t
is longest bar first.

5

3.3 SORTLIST LIST

The SORTLIST l is t contains a l l CSP's, sor ted in to l e f t - to- r igh t o rder .

4. PARSER DESCRIPTION

The parser receives groups of characters from t h e user through the character
recognizer. The following operations are done on each character of a group
before entry into the pars ing .program proper:

1. A check is made t o see if t h e new character overwrites an old
character. (See Section 5 on ed i t ing fo r a desc r ip t ion o f t h i s
process. 1

2. A CSP block i s constructed and set with the information available
from the character recognizer.

3. The character i s placed i n the display buffer for output .

4. The CSP i s so r t ed i n to t he SORTLIST according t o t h e v a l u e of Xo.

The parser operates from t h e SORTLIST, A t any time, each character is processed
with reference to the characters that have already been processed and placed on
the STRING l ist . The character being processed i s ca l led the input charac te r ;
any previously processed character, a reference characterr

The analysis of an input character is i n two phases: the f irst phase f inds a
substr ing of the characters on the STRING l i s t tha t the input charac te r can be
r e l a t ed t o ; t h e second phase checks for var ious re la t ions tha t can ex is t between
the input character and a reference charac te r from the subs t r ing .

The r e l a t ionsh ips t ha t can be found between an input character and a reference
character are: subscr ipt , superscr ipt , mainl ine, or unrelated. Figure 3 shows
the posit ional information used t o check such re la t ionships .

6

I

Superscript Unrelated

Mainline

Slope = -1/4

Unrelated

IX Bound

Reference character

Figure 3. Derivation of Posit ional Relationship Information

To be considered a t a l l , t he l e f t edge of t he input character must be t o t h e
r i g h t of t h e l e f t edge of t h e reference character . To be a superscr ip t ,
the input character must be shorter than the reference character , the center
of t he input character must be above the top Y bound, and t h e l e f t edge of the
input character must be t o t h e l e f t of the X bound. To be a subsc r ip t , t he
input character must be shor te r than t h e reference character , t h e center of the
input character must be below the bottom Y bound, and t h e l e f t edge of t he
input character must be t o t h e l e f t of t h e X bound. Any input character
whose center falls between t h e top and bottom Y bounds is a mainl ine character ,
Any input character not meeting any of t h e above conditions is unrelated.

The processing performed during the first phase of the parser depends on whether
t h e symbol i s a horizontal bar or not . If the input character is not a hori-
zontal bar, a search is made f o r any horizontal bar a l ready in the s t r i n g that
the input character might be above o r below. An input character is r e l a t ed
t o a hor izonta l bar i f the center of t h e input character l ies within the
X extent of the bar. This check i s made with t h e FRACT l ist . If the input
character is related t o a hor izonta l bar, the bar is changed from a minus t o
a f r ac t ion bar i f necessary. Then it is determined whether the input character
belongs i n the numerator o r denominator of t h e bar, by comparing t h e center of

7

the input charac te r and the center o f the bar. The characters a l ready in t h e
appropriate par t of the bar are used as t h e first subs t r ing of charac te rs tha t
the input character can be r e l a t ed to. If t h i s subset is not empty, any hori-
zon ta l ba r s i n t he subs t r ing are checked t o Bee i f the cur ren t charac te r l i e s
wi th in the i r ex ten t . If so, the process i s r epea ted t o f i nd a new subset .
Eventually, a character substr ing (possible empty) i s found which contains
the characters associated with the same f rac t ion bar as the input character .
If no f rac t ion bars have been found, the subset i s t h e ent i re s t r ing . The
r e l a t ed f r ac t ion ba r en t ry i n the CSP for the input charac te r is assigned at
th i s po in t .

Figure 4 shows some two-dimensional s t ruc tures , input charac te rs , and t h e sub-
sets of characters t ha t are used. The box (0) ind ica tes the input charac te r .

Expression

a + b + m

a + - b

El

Substring Found

a + b +

empty

a + b e +

a + b

d + b -
e + u

a + b + L + a d

f
b + - + C

d

Figure 4. Sample Input Structures and Character Subsets

If the subs t r ing i s empty, the input character i s assigned as a mainline
c h a r a c t e r t o t he numerator o r denominator of t h e f r ac t ion bar, as appropriate ,
and the ana lys i s is complete. Otherwise, the nearest of t h e c h a r a c t e r s t o
t he input character whose l e f t edge i s t o t h e l e f t of t h e l e f t edge of t h e
input character is chosen as the f i r s t r e f e rence cha rac t e r . The two characters
a r e compared. If a r e l a t i o n i s found, the funct ion and re la ted charac te r
e n t r i e s i n t h e CSP are set accordingly, and t h e ana lys i s i s f inished. If not ,
the character before the current reference character in the substr ing i s se lec ted
as the next reference character . This process cont inues un t i l e i ther a r e l a t i o n
is found o r the beginning of t he subs t r ing is reached, If the beginning of t h e
substr ing i s reached, t he input character is unrelated and t h e CSP i s so marked.

If the input character is a hor izonta l bar, a check i s made t o see i f t he bar
i s a f rac t ion bar , o r is i n a fract ion. This i s determined by the presence of

8

characters whose centers are either above o r below the input bar and are
contained within t h e X entent of the bar. If no such characters are found,
t he bar is assumed t o be a minus s ign, and it is treated as an ordinary char-
a c t e r (as above). It i s s t i l l placed on t h e FRACT l is t , as characters
encountered later may convert it i n t o a fracti 'on bar,

If the bar i s determined t o b e a f rac t ion bar , a process similar t o t h a t used
for ordinary characters is entered to f ind the p roper subs t r ing of charac te rs
i n which the input bar should be placed. There are th ree poss ib l e r e su l t s .

1. The substr ing is empty. The bar is then a minus s ign after a l l , and
i s t r ea t ed as an ordinary character.

2. A l l of the charac te rs in the subs t r ing are i n the numerator o r t h e
denominator of the new bar. I n t h i s ca se , t he cha rac t e r s are copied
i n t o the appropr ia te pos i t ion in the express ion for the input bar,
and t h e function and related character entr ies of t h e f i r s t c h a r a c t e r
i n the subset become the funct ion and r e l a t ed cha rac t e r en t r i e s i n
the CSP of the input bar. The function and related cha rac t e r en t r i e s
of t he first character of t h e subset are changed t o r e f l e c t t h e new
s i tua t ion .

3. The f r ac t ion bar may have some (but not a l l) of t h e characters i n the
subs t r ing i n its numerator o r denominator. In t h i s case, the char-
a c t e r s i n t h e numerator o r denominator a re de le ted from the subs t r ing
and placed into an expression containing the input bar. Then the
f r ac t ion bar i s analyzed w i t h the cha rac t e r s l e f t ove r i n t he subs t r ing .

The placement of an input character into t h e output STRING l i s t i s done from
t h e e n t r i e s s e t i n t o t h e CSP by the analysis process . It i s a simple matter
of locat ing the input character wi th r e s p e c t t o i t s re la ted charac te r and
adding any in te rna l charac te rs necessary to spec i fy the re la t ionship . If the
character i s unrelated, it is so r t ed i n to the STRING l i s t by i t s pos i t ion i n
t he two-dimensional expression. This method o f t en r e su l t s i n t he correct
placement of a character even though it could not be analyzed.

5 . EDITING OPERATIONS

There are two c lasses of edit ing operations: overwrite and move. The overwrite
c lass consis ts of t h e two operations scrub and character overwrite. These a r e
done i n t h e character input mode--the normal mode of operation, The move c l a s s
consis ts of horizontal open-up, horizontal close-up, move expression, and move
group operations. These operations must be done i n the spec ia l move mode, which
i s entered from a l igh t bu t ton .

9

5.1 OVERWRITE OPERATIONS

Overwrite and scrub are used t o d e l e t e and change characters. Scrub i s an input
t h a t i s analyzed by the character recognizer as having too many features . When
t h i s i s detected, a l l characters whose centers are wi th in the rec tangle sur -
rounding the scrub character are deleted. The expressions associated with
these characters are also deleted. This means t h a t i f a character i s deleted,
i t s sub- and super-scripts are deleted a lso; i f a f r ac t ion ba r i s de le ted , the
numerator and denominator are deleted also, as shown i n Figure 5.

E X P R E S S I O N - SCRUB

1

RESULT -

I

I I I I I I

I I I I

I

I I I I I

F I G U R E 5 . SCRUB O P E R A T I O N S

10

An overwrite is simply a new character written over an old character. For each
new character input, all old characters whose centers lie within the rectangle
surrounding the new character are deleted. The expressions of these characters
are not deleted. This allows characters to be replaced as shown in Figure 6.

EXPRESSION OVERWRITE, RESULT -

FIGURE 6. OVERWRITE OPERATION

5.2 MOVE OPERATIONS

The move operations are used to move characters around in the user's two-
dimensional expression. They are indicated by special characters which are
recognized in the move mode. These characters are:

Operation Character

Horizontal Open-up Any single stroke beginning in the rectangle
of an existing character.

Horizontal Close-up Two strokes; the beginning and ending points
of each stroke must determine a horizontal line.

Move Expression A period within an existing character followed
by any second stroke.

Move Group A horizontal line followed by a second stroke.
The line between the beginning of the first
stroke and the beginning of the second stroke
must be horizontal.

When arbitrary strokes are allowed, only the beginning and ending points are
involved and these are used to determine the increments in X and Y that are
used to move the characters.

These four move operations are described in more detail in the following sections.

5.2.1 Horizontal Open-up

The purpose of the horizontal open-up operation is to create a space in the
two-dimensional structure. An X increment is calculated from the difference
between the end points (from beginning to end) of the stroke used to signify
this operation.

11

The character whose rectangle contains the beginning of the stroke is then found,
If the X increment is positive (move right), the specified character and a l l
characters to its right are moved by the X increment. If the X increment is
negative, the specified character and all characters to its left are moved left
by the X increment. Any character moved off the screen is deleted and cannot
be recovered. If the specified character is in a fraction, only characters
in the fraction are moved. The Figure 7 illustrates this function.

LEFT
STROKE

RIGHT
STROKE

STROKE
LEFT

RIGHT
STROKE

EXPRESSION OPEN-UP

I 'IGURE 7. HORIZONTAL OPEN-UP OPERATIONS

RESULT

b

12

5.2.2 Horizontal Close-up

This operation is the inverse of open-up, All characters to the right of the
e$ase-up symbol are moved left by an amount determined by the average length
of the strokes. The same limits on fractions and screen limits apply in close-up.
Figure 8 shows some examples.

EXPRESSION CLOSE-UP RESULT - .

1 . I :
FIGURE 8. HORIZONTAL CLOSE-UP OPERATIONS

5.2.3 Move Expression

This operation allows an expression to be moved arbitrarily in X and Ye The
character is specified by the dot, the amount to be moved by the beginning and
end of the second stroke. The specified character and its expression are moved;
nothing else is changed, As before, any character moved off the screen is deleted.
Figure 9 shows an example of this,

13

EXPRESSION MOVE - RESULT -

*, ,
FIGURE 9. MOVE EXPRESSION OPEPATION

5.2.4 Move Group

This operation allows a group of characters to be moved. The horizontal line
delimits the characters to be moved; the second stroke determines the increments
for the move. If the group is to be moved up (Y increment is positive) then all

, characters above the horizontal line are moved up; if down, all characters below
the line are moved down. Motion in the X direction is also done a5 specified
by the second stroke. No other characters are changed. Any characters moved
off the' screen are deleted. See Figure 10.

EXPRESSION .

.

FIGURE IO. MOVE GROUP OPERATIONS

14

6 . CONCLUSION

The notation accepted by this version of the parser is only a subset of the notation
. - d a

used in mathematics. In particular, expressions such as X, X,)(and (t)
cannot be analyzed. c b

However, the range of notation accepted is sufficiently broad so that useful
work can be done without resorting to linear equivalents as input. Future work
will include removal of these limitations.

This program demonstrates the usefulness of allowing ordinary hand-printed
mathematical notation to be used as a computer language, The most important
conclusion to be drawn at this time is that the techniques for utilizing
common two-dimensional notations should be extended to encompass all commonly
used notations in all fields of science and engineering.

15

